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This paper investigates a velocity tracking control approach for air-breathing supersonic vehicles with uncertainties and external
disturbances. Considering angle of attack is difficult to be precisely measured in practice, extended state observer technique is
introduced into the state reconstruction design. In order to avoid possible oscillations in the design of the traditional extended state
observer (TESO), a modified extended state observer (MESO) is developed, where a new smooth function is proposed to replace
nonsmooth function of TESO. On the basis of it, an active disturbance rejection controller (ADRC) is designed for velocity control
systems. Simultaneously, the closed-loop stability is rigorously proved by using Lyapunov theory. Finally, numeric simulations are
conducted to validate the effectiveness of the proposed method.

1. Introduction

Air-breathing supersonic vehicles (ASV) are becoming cru-
cial in recent decades because they may provide a feasible
and cost-efficient access to space for both civilian and
military applications [1]. In comparison to traditional rocket
propulsion weapon systems, ASV represents a series of
advantages of higher payload capacity, lower flight cost, and
rapid global precision strike capability. However, most ASV
adopt the design of airframe integrated with scramjet engine
configuration [2], which leads to strong couplings between
the flight attitude and propulsion. For instance, the compres-
sion of the flow through the scramjet engine inlet depends
on the characteristic of the bow shock wave under the vehicle
fore-body, which is mainly up to the angle of attack (AOA).
In addition, the dynamic model built by using aerodynamic
experiments is usually imprecise due to the unmodelled dy-
namics and external disturbances in practice. Thus, the con-
trol design of such flight control systems is a challenging
issue due to its high nonlinearities, strong couplings, and
significant uncertainties.

In recent decades, plenty of control strategies have also
been explored for air-breathing hypersonic vehicles (AHV),
for example, feedback linearization [3], backstepping [4],

adaptive control [5, 6], and sliding mode control (see [7, 8]
and references therein). Generally speaking, feedback lin-
earization is an effective means to analyse stability of the
nonlinear system, and it was used to design AHV control sys-
tem in [3]. However, the feedback linearization excessively
depends on the accurate information of the dynamic model,
and it cannot deal with the unknown changes of the dynamic
system. Additionally, a backstepping control scheme is pro-
posed by combining the dynamic surface control technique
in [4], but there still exist the fatal shortcomings of “explosion
of term” in the backstepping design, because of the repetitive
computation of differentiation for virtual control laws. From
[5, 6], adaptive control technique has provided a new way
to design the control system. However, adaptive control-
lers always have overly complicated computation and the un-
known parameters of system need to be recognized online,
which cannot be implemented in engineering. Among previ-
ous control approaches, sliding model control (SMC) attracts
extensive attention due to its simplicity and robustness to
parameter uncertainties and external disturbances [7, 8].
Unfortunately, there are also somedisadvantages in SMC, and
the well-known one is chattering phenomenon, which limits
application of SMC in the AHV control system.
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It is worthwhile to mention that the active disturbance
rejection controller (ADRC) has been well developed as an
effective robust control strategy to achieve satisfactory perfor-
mance for nonlinear systems with uncertainties and external
disturbances [9, 10]. Compared with the methods mentioned
above, ADRC does not depend on the accurate information
of unknown dynamic model. It can retain better static and
dynamic performances and stronger robustness and adapt-
ability, where a nonlinear control strategy is designed by
estimating and compensating the internal and external dis-
turbances in real time. Thus, the ADRC is widely applied in
industrial control, for example,motion control [11, 12],micro-
electromechanical gyroscopes [13, 14], wind energy system
[15, 16], and robot control [17, 18]. In recent research, the
concept of ADRC has also been applied in the field of AHV
[19–21]. Reference [19, 20] presented ADRC control schemes
forAHVattitude tracking control system. Based on thiswork,
a novel ADRC approach was designed for hypersonic vehicle
attitude tracking system by introducing trajectory lineariza-
tion control technique in [21]. In all these attitude system con-
trol designs for AHV, there are two aspects of issues. One is
that AOA is assumed to be precisely measurable. In practice,
AOA is unfortunately difficult to be measured. The other is
that in the framework of ADRC the extended state observer
(ESO) is used to estimate the lumped uncertainties without
any parametric condition [22, 23], and estimation error can
converge to zero in the specified condition. Nevertheless, the
traditional ESO (TESO) is not able to obtain high precision
and enough smooth response because the general nonlinear
function used in TESO is nonderivable at the dividing point.
Consequently, there is a potential unsatisfactory chattering
phenomenon in the estimated dynamics if the width of frac-
tion is fairly small [24].

In terms of these two issues, the objective of this paper is
to further study the ADRC design for nonlinear ASV velocity
systems subject to parameter uncertainties, external distur-
bances, and immeasurable AOA. Firstly, we investigate a
MESO by introducing a new smooth function to obtainmore
precise estimation of lumped unknown dynamics.Then con-
sidering the AOA cannot be measured directly, the MESO-
based reconstruction design of AOA is conducted in the
ADRC velocity systems, and the closed-loop system stability
is also proved based on Lyapunov theory. Finally, extensive
simulations are conducted to verify the performance of the
proposed control method.

The remainder of this paper is organized as follows.
Section 2 describes the longitudinal dynamic model of ASV
and states the problem formulation and some preliminaries.
In Section 3, a MESO is developed by using a new smooth
function and theMESOconvergence is analysed. In Section 4,
the ADRC-based controller is designed in detail and the
closed-loop system stability is also proved. Comparative
simulations are conducted in Section 5 and some conclusions
are involved in Section 6.

2. Problem Formulation

This paper will investigate the velocity control design for
air-breathing supersonic vehicle systems. A typical velocity
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Figure 1: Velocity control process of ASV systems.

control process of nonlinear air-breathing supersonic vehicle
systems can be given in Figure 1. The task of the velocity
controller is to calculate the control𝑚𝑐 (i.e., fuelmass flow) in
terms of the desired velocity command𝑉𝑐 (i.e., control input)
and current velocity 𝑉. The thrust force 𝑇 is produced by the
scramjet engine system, which can be decided by the velocity,
fuel mass flow, and angle of attack 𝛼. The current velocity is
measured by inertial navigation system while angle of attack
is not precisely measurable in practice. Thus it is essential
to reconstruct the angle of attack by using the measurable
attitude, which will be discussed in the next section.

With design simplification and without loss of generality,
we only consider the longitudinal dynamics of ASV here.The
nonlinear dynamics can be described by a set of differential
equations in terms of velocity 𝑉, flight-path angle 𝜃, altitudeℎ, angle of attack 𝛼, pitch rate 𝜔𝑧, and vehicle mass𝑚, respec-
tively. Define the state vector [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑉, 𝜃, 𝛼, 𝜔𝑧],
and the nonlinear dynamics can be written in a state-space
form [25] as follows:

𝑥̇1 = 𝑓1 + 𝑔1𝑚𝑐 + 𝑑𝑡
𝑥̇2 = 𝑓2
𝑥̇3 = 𝑥4 − 𝑓2
𝑥̇4 = 𝑓4 + 𝑔4𝛿𝑧.

(1)

Here

𝑓1 = (𝑞𝑆𝐶𝑇0 cos𝛼 − 𝐷)
𝑚 − 𝑔 sin 𝜃,

𝑔1 = 𝑞𝑆𝐶𝑚𝑐
𝑇

cos𝛼
𝑚 ,

𝑓2 = (𝑇 sin𝛼 + 𝐿)
𝑚𝑉 + 𝑔cos 𝜃𝑉 ,

𝑓4 = [𝑞𝑆𝑙 (𝐶𝛼𝑀𝛼 + 𝐶𝜔𝑧
𝑀
𝜔𝑧)]𝐽𝑧 ,

𝑔4 = 𝑞𝑆𝑙𝐶𝛿𝑧
𝑀𝐽𝑧 ,

(2)

where 𝑔, 𝐽𝑧 represent the acceleration of gravity and the
moment of inertia, respectively; fuel mass flow 𝑚𝑐 is the
control;𝑑𝑡means the total disturbance of velocity system.The
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lift 𝐿, drag𝐷, thrust force𝑇, and pitchingmoment𝑀𝑧 can be
formulated as

𝐿 = 𝑞𝑆𝐶𝐿
𝐷 = 𝑞𝑆𝐶𝐷
𝑇 = 𝑞𝑆𝐶𝑇

𝑀𝑧 = 𝑞𝑆𝑙 (𝐶𝛼𝑀𝛼 + 𝐶𝜔𝑧
𝑀
𝜔𝑧 + 𝐶𝛿𝑧

𝑀
𝛿𝑧) ,

(3)

where dynamic pressure 𝑞 = 0.5𝜌𝑉2, and 𝑆 and 𝑙 denote
reference area and length, respectively. 𝜌 is density of air; 𝐶𝐿,𝐶𝐷, and 𝐶𝑇 define the lift, drag, and thrust force coefficient,
separately.𝐶𝛼𝑀,𝐶𝜔𝑧𝑀 , and𝐶𝛿𝑧𝑀 represent themoment coefficient
due to the angle of attack, pitch rate, and deflection of the
control surface 𝛿𝑧, respectively. Here, 𝐶𝐿 and 𝐶𝐷 are usually
obtained by wind tunnel test.

Owing to the couplings between the aerodynamic force
and the propulsion system, a precise curve-fitted approxima-
tion of thrust coefficient is expressed as

𝐶𝑇 = 𝐶𝑚𝑐
𝑇 (ℎ,Ma, 𝛼) ⋅ 𝑚𝑐 + 𝐶𝑇0 (ℎ,Ma, 𝛼) , (4)

where the coefficients 𝐶𝑚𝑐
𝑇

and 𝐶𝑇0 depend on the altitude ℎ,
Mach number Ma, and 𝛼.

Meanwhile, the parameter uncertainties and external dis-
turbance are considered in this study, and the parametric
uncertainties are depicted as a perturbation Δ to its nominal
values; that is,

𝐶𝐷 = 𝐶𝐷0 (1 + Δ𝐶𝐷)
𝜌 = 𝜌0 (1 + Δ𝜌) , (5)

where subscript 0 denotes the nominal value. The total dis-
turbance 𝑑𝑡 is unknown and boundedwith the parameter un-
certainties and external disturbances 𝑑 in the velocity system,
which is expressed as

𝑑𝑡 = −𝑆𝑉22𝑚 (𝜌0Δ𝐶𝐷 + 𝐶𝐷0Δ𝜌 + Δ𝜌Δ𝐶𝐷) + 𝑑. (6)

3. Modified ESO Design

In this section, MESO is developed based on a new smooth
function to prevent undesirable chattering phenomenon in
TESO, and the MESO will be employed to address the un-
known lumped dynamics and the unmeasured AOA.The de-
sign of MESO can be processed as follows.

To begin, the concept of the traditional ESO is presented,
and an 𝑛th order nonlinear dynamic system is considered as

𝑧(𝑛) = 𝑓 (𝑧, 𝑧̇, . . . , 𝑧(𝑛−1), 𝑤) + 𝑏𝑢, (7)

where𝑓(⋅) is the function of the system states 𝑧 and unknown
disturbance 𝑤.

By introducing an extended state 𝑧𝑛+1, system (7) can be
rewritten in a state-space form; that is,

𝑧̇1 = 𝑧2
𝑧̇2 = 𝑧3

...
𝑧̇𝑛 = 𝑧𝑛+1 + 𝑏𝑢

𝑧̇𝑛+1 = 𝑤̇
𝑦 = 𝑧1,

(8)

where the uncertain item 𝑤̇ is unknown and bounded. Con-
sequently, we can estimate the uncertain item by using state
observer technique, which is defined as follows:

̇̂𝑧1 = 𝑧̂2 + 𝛽01𝑔1 (𝑒1)
̇̂𝑧2 = 𝑧̂3 + 𝛽02𝑔2 (𝑒1)

...
̇̂𝑧𝑛 = 𝑧̂𝑛+1 + 𝛽0𝑛𝑔𝑛 (𝑒1) + 𝑏𝑢

̇̂𝑧𝑛+1 = 𝛽0𝑛+1𝑔𝑛+1 (𝑒1) ,

(9)

where 𝑒1 = 𝑦 − 𝑧̂1 is observer output error, and 𝑧̂𝑛+1 is esti-
mation value of the unknown disturbance. 𝛽0𝑖 is the 𝑖th
observer gain and 𝑔𝑖(𝑒1) represents a set of suitably con-
structed nonlinear functions satisfying 𝑒1𝑔𝑖(𝑒1) > 0, ∀𝑒1 ̸= 0
and 𝑔𝑖(0) = 0. If the nonlinear functions 𝑔𝑖(⋅) and the related
parameters are chosen properly, the estimated state variables𝑧̂𝑖 are expected to converge to the respective states of the
system 𝑧𝑖; that is, 𝑧̂𝑖 → 𝑧𝑖, 𝑖 = 1, 2, . . . , 𝑛 + 1.

Obviously, the nonlinear function is crucial for the design
of ESO [26], and it can be expressed as

fal (𝑒1, 𝑎, 𝛿) = {{{
𝑒1𝛿𝑎−1 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 ≤ 𝛿
󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝑎 sgn (𝑒1) 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 > 𝛿, (10)

where 𝛿 > 0 and 0 < 𝑎 < 1.
It is easily seen that fal(𝑒1, 𝑎, 𝛿) is not derivable in the

dividing point ±𝛿. Furthermore, if 𝛿 is too small, the deriva-
tive of function fal(𝑒1, 𝑎, 𝛿) will become nonsmooth, which
will degrade the performance of the system and even seri-
ously trigger divergent phenomenon.

Consequently, it is imperative to find a smooth and deriv-
able function fal2(𝑒1, 𝑎, 𝛿) to replace the traditional fal(𝑒1,𝑎, 𝛿), and the modified function fal2(𝑒1, 𝑎, 𝛿) is depicted as
follows.

When |𝑒1| > 𝛿, fal2(𝑒1, 𝑎, 𝛿) is same as (10) such that

fal2 (𝑒1, 𝑎, 𝛿) = 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨𝑎 sgn (𝑒1) . (11)

When |𝑒1| < 𝛿, we choose
fal2 (𝑒1, 𝑎, 𝛿) = 𝑝𝑒1 + 𝑞𝑒12 + 𝑟 (1 − exp (𝑒1)) (12)
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subject to

fal2 (𝑒1, 𝑎, 𝛿) = 𝛿𝑎 𝑒1 = 𝛿
fal2 (𝑒1, 𝑎, 𝛿) = −𝛿𝑎 𝑒1 = −𝛿
fal󸀠2 (𝑒1, 𝑎, 𝛿) = 𝑎𝛿𝑎−1 𝑒1 = 𝛿, −𝛿,

(13)

where (13) can guarantee that (12) is smoothly convergent to
zero; exp(⋅) is the exponential function based on the natural
constant 𝑒.

Substituting (12) into (13), then we can obtain that

𝑝
= 𝛿𝑎−1 (2 − 4 ⋅ exp (𝛿) + 2 ⋅ exp (2𝛿) + 𝑎 + 2𝛿 − 𝑎 ⋅ exp (2𝛿))

2𝛿 + exp (2𝛿) − 4 ⋅ exp (𝛿) + 3
𝑞 = 𝛿𝑎−2 (1 − 𝑎) ⋅ (exp (𝛿) − 1)2

2𝛿 + exp (2𝛿) − 4 ⋅ exp (𝛿) + 3
𝑟 = −2𝛿𝑎 ⋅ exp (𝛿) ⋅ (𝑎 − 1)

2𝛿 + exp (2𝛿) − 4 ⋅ exp (𝛿) + 3 .

(14)

Then, we analyse the convergence of the general second-
order MESO based on the self-stable region method [27] by
introducing the following lemmas.

Lemma 1. In terms of the defined observer estimation errors𝑒1 = 𝑧1 − 𝑧̂1, 𝑒2 = 𝑧2 − 𝑧̂2 and (8)-(9), the MESO errors are
modelled as

̇𝑒1 = 𝑒2 − 𝛽01𝑔1 (𝑒1)
̇𝑒2 = 𝑤 (𝑡) − 𝛽02𝑔2 (𝑒1) , (15)

where 𝛽01, 𝛽02 are the observer gain.
Define the function ℎ𝑐(𝑒1, 𝑒2) = 𝑒2 − 𝛽01𝑔1(𝑒1) +𝑘𝑓𝑐(𝑒1) sgn(𝑒1), where 𝑓𝑐(𝑒1) is a positive definite function,𝑓𝑐(0) = 0, 𝑘 > 1 is a constant. Then, the self-stable region of

system (15) is the region 𝐺 = {(𝑒1, 𝑒2) : |ℎ𝑐(𝑒1, 𝑒2)| ≤ 𝑓𝑐(𝑒1)}.
Proof. Assume (𝑒1, 𝑒2) remains in the region 𝐺 after time 𝑇;
that is, the condition (𝑒1(𝑡), 𝑒2(𝑡)) ∈ 𝐺 is established in terms
of ∀𝑡 > 𝑇. Meanwhile, according to the construction of the
region 𝐺, we can obtain that

− 𝑘𝑓𝑐 (𝑒1) sgn (𝑒1) − 𝑓𝑐 (𝑒1) ≤ 𝑒2 − 𝛽01𝑔1 (𝑒1)
≤ −𝑘𝑓𝑐 (𝑒1) sgn (𝑒1) + 𝑓𝑐 (𝑒1) . (16)

Introduce the function 𝑉1 as follows:
𝑉1 = 1

2𝑒21. (17)

The time derivative of 𝑉1 is conducted as

𝑉̇1 = 𝑒1 ̇𝑒1 = 𝑒1 (𝑒2 − 𝛽01𝑔1 (𝑒1))
≤ − (𝑘 − 1) 𝑓𝑐 (𝑒1) 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 .

(18)

As 𝑘 > 1, 𝑓𝑐(𝑒1) > 0, we can obtain

𝑉̇1 < 0. (19)

Then the conditions 𝑒1(𝑡) → 0 (𝑡 → ∞) and 𝑒2(𝑡) →0 (𝑡 → ∞) hold. Thus, the region 𝐺 is the self-stable region
of system (15). This completes the proof.

Lemma 2. In terms of system (15), if the inequation 𝛽201𝑔󸀠1 >4𝛽02|(𝑔2/𝑔󸀠1)󸀠| holds, the error of the observer will converge to
zero when𝑤(𝑡) = 0, and 𝑔1(𝑒1) is a strictly increasing function;
that is, 𝑒1(𝑡) → 0, 𝑒2(𝑡) → 0 (𝑡 → ∞), where 𝑔󸀠 = 𝑑𝑔/𝑑𝑒1.
Proof. (1) For (𝑒1(𝑡), 𝑒2(𝑡)), which is in the self-stable region𝐺 = {(𝑒1, 𝑒2) : |ℎ𝑐(𝑒1, 𝑒2)| ≤ 𝑓𝑐(𝑒1)}, the error of the observer
will converge to zero; that is, 𝑒1(𝑡) → 0, 𝑒2(𝑡) → 0 (𝑡 → ∞)
based on Lemma 1.(2) For (𝑒1(𝑡), 𝑒2(𝑡)), which is out of the self-stable region𝐺, for example, (𝑒1, 𝑒2) is satisfied with |ℎ𝑐(𝑒1, 𝑒2)| > 𝑓𝑐(𝑒1).

Introduce the function 𝑉2 as follows:

𝑉2 = 1
2 (ℎ2𝑐 (𝑒1, 𝑒2) − 𝑓2𝑐 (𝑒1)) . (20)

The time derivative of 𝑉2 is conducted as

𝑉̇2 = ℎ𝑐 (𝑒1, 𝑒2) ℎ̇𝑐 − 𝑓𝑐 (𝑒1) ̇𝑓𝑐 (𝑒1)
= ℎ𝑐 ( ̇𝑒2 + 𝜕ℎ𝑐𝜕𝑒1 ̇𝑒1) − 𝑓𝑐 d𝑓𝑐d𝑒1 ̇𝑒1
= ℎ𝑐 [−𝛽02𝑔2 + 𝜕ℎ𝑐𝜕𝑒1 (ℎ𝑐 − 𝑘𝑓𝑐 sgn (𝑒1))]

− 𝑓𝑐 d𝑓𝑐d𝑒1 (ℎ𝑐 − 𝑘𝑓𝑐 sgn (𝑒1))

= ℎ𝑐 [𝜕ℎ𝑐𝜕𝑒1 ℎ𝑐 − (𝛽02
󵄨󵄨󵄨󵄨𝑔2󵄨󵄨󵄨󵄨𝑓𝑐 + 𝑘𝜕ℎ𝑐𝜕𝑒1)𝑓𝑐 sgn (𝑒1)]

− 𝑓𝑐 d𝑓𝑐d𝑒1 ℎ𝑐 + 𝑘𝑓𝑐 d𝑓𝑐d𝑒1 𝑓𝑐 sgn (𝑒1) .

(21)

Select the function 𝑓𝑐(𝑒1) as

𝑓𝑐 (𝑒1) = 𝛽02 󵄨󵄨󵄨󵄨𝑔2 (𝑒1)󵄨󵄨󵄨󵄨𝑘𝛽01𝑔󸀠1 (𝑒1) . (22)

Hence

𝛽02
󵄨󵄨󵄨󵄨𝑔2󵄨󵄨󵄨󵄨𝑓𝑐 + 𝑘𝜕ℎ𝑐𝜕𝑒1 = 𝑘𝛽01𝑔󸀠1

+ 𝑘(−𝛽01𝑔󸀠1 + 𝑘d (𝑓𝑐 sgn (𝑒1))
d𝑒1 )

= 𝑘2 d (𝑓𝑐 sgn (𝑒1))
d𝑒1 .

(23)
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Substituting (23) into (21) yields

𝑉̇2 = ℎ𝑐 (𝜕ℎ𝑐𝜕𝑒1 ℎ𝑐 − 𝑘2 d (𝑓𝑐 sgn (𝑒1))
d𝑒1 𝑓𝑐 sgn (𝑒1))

− 𝑓𝑐 d𝑓𝑐d𝑒1 ℎ𝑐 + 𝑘𝑓𝑐 d𝑓𝑐d𝑒1 𝑓𝑐 sgn (𝑒1)

≤ 𝜕ℎ𝑐𝜕𝑒1 ℎ
2

𝑐 + (𝑘2𝑓𝑐ℎ𝑐 + 𝑓𝑐ℎ𝑐 + 𝑘𝑓2𝑐 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(24)

Since

𝛽201 > 4𝛽02𝑔󸀠1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(
𝑔2𝑔󸀠1)
󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 >

(𝑘 + 1)2 𝛽02𝑘𝑔󸀠1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨[
𝑔2𝑔󸀠1 ]
󸀠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (𝑘 + 1)2 𝛽01𝑔󸀠1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(25)

then

𝜕ℎ𝑐𝜕𝑒1 = −𝛽01𝑔󸀠1 + 𝑘d (𝑓𝑐 sgn (𝑒1))
d𝑒1

< − (𝑘 + 1)2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 < 0.
(26)

We can obtain that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕ℎ𝑐𝜕𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−𝛽01𝑔

󸀠

1 + 𝑘d (𝑓𝑐 sgn (𝑒1))
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> 𝛽01𝑔󸀠1 − 𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(27)

Based on (25), we have

𝛽01𝑔󸀠1 > (𝑘 + 1)2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (28)

Substituting (28) into (27) yields
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕ℎ𝑐𝜕𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > 𝛽01𝑔󸀠1 − 𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > (𝑘 + 1)2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 − 𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= (𝑘2 + 𝑘 + 1) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(29)

Furthermore,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕ℎ𝑐𝜕𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ℎ
2

𝑐 > (𝑘2ℎ2𝑐 + 𝑘ℎ2𝑐 + ℎ2𝑐)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
> (𝑘2𝑓𝑐ℎ𝑐 + 𝑓𝑐ℎ𝑐 + 𝑘𝑓2𝑐 )

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑓𝑐
d𝑒1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(30)

According to (24) and (30), we can obtain that

𝑉̇2 < 0. (31)

Thus, the error of the observer will converge to zero, that
is, 𝑒1(𝑡) → 0, 𝑒2(𝑡) → 0 (𝑡 → ∞). This completes the proof.

z z 
MESOAttitude

System

Figure 2: The structure of AOA reconstruction.

In terms of (11)-(12), the functions 𝑔𝑖(𝑒1) are
𝑔1 (𝑒1) = 𝑒1
𝑔2 (𝑒1) = 𝑝𝑒1 + 𝑞𝑒12 + 𝑟 (1 − exp (𝑒1)) .

(32)

According to Lemma 2, the self-stable condition of (15) is

𝑓𝑐 (𝑒1) = 𝛽02 󵄨󵄨󵄨󵄨󵄨𝑝𝑒1 + 𝑞𝑒12 + 𝑟 (1 − exp (𝑒1))󵄨󵄨󵄨󵄨󵄨𝑘𝛽01 ,
𝛽201 > 4𝛽02 󵄨󵄨󵄨󵄨𝑝 + 2𝑞𝑒1 − 𝑟 ⋅ exp (𝑒1)󵄨󵄨󵄨󵄨 .

(33)

Therefore, the MESO can be employed to estimate the
total disturbances and reconstruct the unmeasured AOA.

4. Control System Design

In this section, a robust control method is proposed based
on the ADRC technique to handle parameter uncertainties
and external disturbances. It is assumed that the attitude had
been adjusted to the command value when velocity control
design is proceeding; that is, the velocity is mainly related
to fuel mass flow 𝑚𝑐 since the thrust force 𝑇 is affected by𝛼. Additionally, AOA reconstruction method is developed by
using the available input/output information of attitude sys-
tem via MESO.

4.1. AOA Reconstruction. Practically, the deflection of the
control surface 𝛿𝑧 and the pitch rate 𝜔𝑧 are measurable, but
the AOA 𝛼 is difficult to be precisely measured. To address
this problem, themodified extended state observer technique
is introduced into the design of the reconstruction for AOA.
From the AOA reconstruction depicted in Figure 2, it can
be seen that this strategy only needs the information of the
measured 𝛿𝑧 and 𝜔𝑧.

The AOA reconstruction based on the MESO is formu-
lated as

𝑒 = 𝑧1 − 𝜔𝑧
𝑧̇1 = 𝑓4 + 𝑔4𝛿𝑧 − 𝛽01𝑒
𝑧̇2 = 𝑧3 − 𝛽02fal2 (𝑒, 𝑎, 𝛿) + 𝑧1
𝑧̇3 = −𝛽03fal2 (𝑒, 𝑎, 𝛿) ,

(34)



www.manaraa.com

6 Complexity

where 𝛽0𝑖 (𝑖 = 1, 2, 3) is the observer gain. If 𝛽0𝑖 is chosen
appropriately, the state variables of MESO will converge as
follows:

𝑧1 󳨀→ 𝜔𝑧,
𝑧2 󳨀→ 𝛼,
𝑧3 󳨀→ −𝑓2.

(35)

Obviously, 𝛼 is reconstructed by 𝑧2 without 𝑓2; that is,𝛼̃ = 𝑧2.Thus, the reconstruction 𝑧2 can be used in the velocity
system instead of the measured AOA.

4.2. Velocity Controller Design. In this subsection, the ADRC
is designed for the velocity control of nonlinear ASV system
in the presence of uncertainties and disturbances. From the
structure of the ADRC for ASV velocity control shown in
Figure 3, it can be seen that theADRC systemmainly includes
three parts. In part 1, MESO is designed to estimate the
total disturbances. Then, a nonlinear state error feedback
(NLSEF) law is conducted to obtain the initial control law𝑢0 according to the error between state values and command
values in part 2, and the velocity control law 𝑢 is implemented
by augmenting the NLSEF law 𝑢0 with the disturbance
compensation 𝑧V2 which is completed by MESO in part 3.

In this way, the velocity can be controlled in set value, and
the ADRC design procedure of velocity control is presented
in detail as follows.

4.2.1. Total Disturbance Estimation. The key of this design is
to interpret the total disturbance including the uncertainties
anddisturbances as an additional state to be estimated.Differ-
ent from the traditional ADRC, the MESO with the modified
smooth function fal2(𝑒1, 𝑎, 𝛿) is adopted to estimate the total
disturbances 𝑑𝑡. For this purpose, we add an extended state𝑥5 as the total disturbance 𝑑𝑡 which is calculated by (6), and
then the velocity system is rewritten as

𝑥̇1 = 𝑓1 + 𝑢V + 𝑥5
𝑥̇5 = ℎ (𝑡) , (36)

where 𝑢V = 𝑔1𝑚𝑐 and the function ℎ(𝑡) is the derivative of 𝑑𝑡,
which is unknown and bounded.Then a second-orderMESO
is proposed as

𝑒1 = 𝑧V1 − 𝑥1
𝑧̇V1 = 𝑧V2 − 𝛽01𝑒1 + 𝑓1 + 𝑢V
𝑧̇V2 = −𝛽02fal2 (𝑒1, 𝑎, 𝛿) ,

(37)

where the observer gains are 𝛽01 > 0, 𝛽02 > 0, and corre-
sponding to (24) the stability condition of MESO is satisfied.
That is, 𝑧V1 → 𝑥1, 𝑧V2 → 𝑑𝑡 can be guaranteed in finite time.
In this case, 𝑧V2 is the estimated value of the total disturbances;
that is, the estimated errors can converge to zero in finite time.
This indicates that an improved tracking performance can be
achieved by using the estimated state 𝑧V2 in the controller
design to compensate for the total disturbances 𝑑𝑡.

4.2.2. Nonlinear State Error Feedback Law. A nonlinear feed-
back control law is the nonlinear combination of the errors
between the command and the real state. Here, by introduc-
ing fal2(𝑒1, 𝑎, 𝛿), the feedback control law is selected as

𝑒2 = 𝑥∗1 − 𝑥1
𝑢V0 = 𝑏fal2 (𝑒2, 𝑎, 𝛿) , (38)

where 𝑥∗1 = 𝑉𝑐 is the velocity command and 𝑏 is the ADRC
parameter.

4.2.3. Disturbance Dynamic Compensation. In order to
reduce the influence of the disturbances, the disturbance
dynamics need to be substituted into the control law based
on the estimated state 𝑧V2 which is obtained by the MESO.
According to the structure of ADRC, the final control law of
system (36) can be expressed as

𝑢V = 𝑢V0 − 𝑓1 − 𝑧V2. (39)

Then the control

𝑚𝑐 = (𝑢V0 − 𝑧V2 − 𝑓1)𝑔1 . (40)

4.3. Stability Analysis. This subsection will study the stability
and the convergence of the closed-loop system. Define the
estimation errors of total disturbance

𝑒3 = 𝑧V2 − 𝑑𝑡. (41)

Substituting (39) into (36), then the velocity control
system is rewritten as

𝑥̇1 = 𝑓1 + 𝑢V + 𝑑𝑡 = 𝑓1 + (𝑢V0 − 𝑓1 − 𝑧V2) + 𝑑𝑡
= 𝑢V0 − 𝑒3. (42)

Choose the following Lyapunov function:

𝑉3 = 1
2 (𝑥∗1 − 𝑥1)2 . (43)

Then calculate the time derivate of 𝑉3; that is,
𝑉̇3 = (𝑥̇∗1 − 𝑥̇1) (𝑥∗1 − 𝑥1) = (𝑥̇∗1 + 𝑒3 − 𝑢V0) (𝑥∗1 − 𝑥1)

= −𝑢V0 (𝑥∗1 − 𝑥1) + (𝑥̇∗1 + 𝑒3) (𝑥∗1 − 𝑥1)
= 𝑏fal2 ((𝑥∗1 − 𝑥1) , 𝑎, 𝛿) + (𝑥̇∗1 + 𝑒3) (𝑥∗1 − 𝑥1)
= −𝑏 󵄨󵄨󵄨󵄨𝑥∗1 − 𝑥1󵄨󵄨󵄨󵄨𝑎+1 + (𝑥̇∗1 + 𝑒3) (𝑥∗1 − 𝑥1) .

(44)

If |𝑏||𝑥∗1 − 𝑥1|𝑎 ≥ |𝑒3 + 𝑥̇∗1 |, then 𝑉̇3 ≤ 0 is satisfied; that is,
the control system is stable.

5. Simulation Results and Discussions

In this section, a numerical simulation is conducted to
illustrate the effectiveness of the control method and the state
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Figure 3: The structure of the ADRC.

V-Case 1
V-Case 2
V-Case 3

Case 1
Case 2
Case 3

0 5 10
−0.4

−0.2

0

800

850

900

950

Ve
lo

ci
ty

 (m
/s

)

10 20 30 40 50 60 70 80 90 1000
t (s)

VＬ？＠

10 20 30 40 50 60 70 80 90 1000
t (s)

−0.4

−0.3

−0.2

−0.1

0

0.1

Tr
ac

ki
ng

 E
rr

or
 (m

/s
)

Figure 4: Velocity tracking and tracking error.

Table 1: Parameter uncertainties of different cases.

Case Δ𝐶𝐷 Δ𝐶𝐿 Δ𝜌 𝑑 (m/s2)
1 0 0 0 0
2 −20% +5% +3% +2.5 sin (0.1𝜋𝑡)
3 +20% −5% −3% −2.5 sin(0.1𝜋𝑡)

reconstruction strategy. In order to show the performance
improvement of the MESO, the total disturbances of the sys-
tem are estimated by comparing with TESO method. Three
conditions with uncertainties and external disturbance are
listed in Table 1.

Here, the initial values of velocity𝑉, 𝜃, ℎ, and𝑚 are set to
be 𝑉(0) = 800m/s, 𝜃(0) = 0 deg, ℎ(0) = 15 km, and 𝑚(0) =500 kg.The controller parameters are given in Table 2, and the
simulation results are presented in Figures 4–13.

As shown in Figure 4, the system state 𝑉 can accu-
rately and quickly track the given command. Moreover, the

Table 2: Control parameters.

ADRC
parameter 𝛽01 𝛽02 𝛽03 𝑎 𝛿 𝑏
Value 100 300 1000 0.5 0.01 4

tracking error remains remarkably small and converges to
zero asymptotically in all cases; that is, a fairly satisfactory
tracking error response is achievedwith no steady-state error,
which indicates the effectiveness of the suggested control
method. Figures 5 and 6 show that the AOA reconstruction
error rapidly converges to zero with a maximal error about
0.1∘, which indicates that the developed state reconstruction
method is efficient by using the MESO. From the altitude
and flight-path angle histories presented in Figures 7 and 8,
it is apparent that there are no significant differences among
the listed cases. Notably the control 𝑚𝑐 is fairly smooth
without chattering phenomenon (see Figure 9). From Figures



www.manaraa.com

8 Complexity

0

5

Case 1

0

5

A
ng

le
 o

f
At

ta
ck

 (d
eg

)
A

ng
le

 o
f

At
ta

ck
 (d

eg
)

A
ng

le
 o

f
At

ta
ck

 (d
eg

)

Case 2

0

5

Case 3

10 20 30 40 50 60 70 80 90 1000
t (s)

True 
Reconstructed 

10 20 30 40 50 60 70 80 90 1000
t (s)

10 20 30 40 50 60 70 80 90 1000
t (s)

Figure 5: Reconstruction of angle of attack.

Case 1
Case 2
Case 3

0 0.5 1 1.5 2

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

10 20 30 40 50 60 70 80 90 1000
t (s)

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Re
co

ns
tr

uc
tio

n 
Er

ro
r (

de
g)

Figure 6: The reconstruction error of angle of attack.

10–13, it is shown that the suggested MESO can estimate the
total disturbances.Meanwhile, a fairly satisfactory estimation
error response is achieved, while both the transient and
steady-state performance are retained with theMESO. Also it
is found that TESO leads to significant estimation steady-state
error, and the convergence rate is slower than that of MESO.
Furthermore, the influence of uncertainties and disturbances
in the flight control system is inhibited by compensating the
estimated value into the control system, which is owing to
the precise and rapid estimation of the total disturbances
via MESO. Consequently, the simulation results demonstrate
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Figure 8: Variation of the flight-path angle.

that the proposed control scheme achievesgoodvelocity track-
ing performance and enhanced robustness against parameter
uncertainties and external disturbances.

6. Conclusions

In this paper, a novel robust controller is addressed for the
velocity system of a generic ASV. A MESO is proposed by
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Figure 10: Estimations of the total disturbances.

developing a new smooth function to replace the tradi-
tional nonderivable function. Then an ADRC technique is
introduced to track the desired velocity by using the MESO
to estimate and compensate the total disturbance so as to
improve the robustness performance against the parameters
uncertainties and external disturbances. Additionally, a state
reconstructionmethod by utilizing the available input/output
information is presented based on the MESO to reconstruct
the unmeasured AOA. Simulation results demonstrate the

TESO-Case 2
MESO-Case 2

1 2 3 4 5 6 7 8 9
−0.5

−0.4

−0.3

−0.2

−0.1

0

−6

−5

−4

−3

−2

−1

0

1

Es
tim

at
io

n 
Er

ro
r (

m
/s

2
)

10 20 30 40 50 60 70 80 90 1000
t (s)

Figure 11: Estimation error of the total disturbances.
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Figure 12: Estimations of the total disturbances.

effectiveness of the suggested control approach. The exten-
sion of presented control method to a flexible ASV and the
influence of structural flexibility on control system will be
potential areas of further research.

Data Availability
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